Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Bismuth octaborate, Bi₂B₈O₁₅

Bing Teng,* Wen Tao Yu, Ji Yang Wang, Xiu Feng Cheng, Sheng Ming Dong and Yao Gang Liu

State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China Correspondence e-mail: bteng@icm.sdu.edu.cn

Received 10 July 2001 Accepted 15 November 2001 Online 31 January 2002

In the title compound, $Bi_2B_8O_{15}$, the Bi atom is coordinated to five or six O atoms. The B atoms exhibit two kinds of hybridization, sp^2 and sp^3 , seen in the BO₃ triangles and BO₄ tetrahedra, respectively. Three BO₃ triangles are connected to form a B₃O₆ planar ring. All atoms in the structure are connected together to form an infinite three-dimensional network.

Comment

The growing field of non-linear optical (NLO) research and applications still requires new materials for developing new laser sources and extending applications. Much effort has been devoted to developing the borate series. Among them, β -BaB₂O₄ (BBO), LiB₃O₅ (LBO), YCa₄(BO₃)₃O (YCOB) and BiB₃O₆ (BIBO) have been studied as promising NLO crystals (Becker, 1998). The B atom usually coordinates with either three or four O atoms, forming BO₃ or BO₄ groups, where the electronic orbitals are hybridized to a planar sp^2 or a three-dimensional sp^3 configuration. The structural unit can comprise several different $B_m O_n$ groups through different combinations, such as the B₃O₆ group in BBO, the B₃O₇ group in LBO, and a combination of BO₃ and BO₄ groups as in BIBO (Xue & Zhang, 1997). Levin & McDaniel (1962) investigated the binary system Bi₂O₃-B₂O₃ and described Bi₂B₈O₁₅ for the first time. Based on their study, the authors have grown a low-temperature form of Bi₂B₈O₁₅ single crystals. To our best knowledge, Bi2B8O15 has not been grown as a single crystal in the past.

The crystal structure of $Bi_2B_8O_{15}$ is shown in Fig. 2. The three-dimensional framework is composed of the following principal components: (*a*) Bi atoms of fivefold and sixfold coordination, (*b*) BO₃ triangles, (*c*) B_3O_6 planar rings and (*d*) BO₄ tetrahedra. The BiO₅ and BiO₆ polyhedra are linked to B_3O_6 rings *via* BO₃ triangles or BO₄ tetrahedra. The ratio of BO₃ triangles to BO₄ tetrahedra is 3:1. The lone-pair electrons are supposedly located near the Bi cation (Hellwig *et al.*, 1999).

The crystal consists of nearly planar B_3O_6 rings bonded through Bi cations, as shown in Fig. 1. The average B-Odistances in the B_3O_6 six-membered rings is 1.39 Å. The B2– O3 bond length [1.44 (3) Å] is significantly longer than the others, including B3-O3 [1.36 (3) Å] and B1-O2[1.34 (3) Å]. The average B-O-B angle is 120.8° with the angles B1-O2-B3 [119.3 (16)°] and B3-O3-B2[121.0 (17)°] showing the the largest deviation. The Bi atom has a distorted octahedral coordination, with average Bi-Odistance of 2.396 Å.

The anionic group theory (Chen & Wu, 1989) revealed that the B_3O_6 groups in BBO play an important role in its excellent NLO responses. Accordingly, the NLO-active clusters in $Bi_2B_8O_{15}$ should be B_3O_6 rings. The additional presence of distorted BiO_6 and BiO_5 polyhedra and lone-pair electrons of Bi may enhance the NLO effect (Zhang & Wang, 1996). The structural features indicated above show that $Bi_2B_8O_{15}$ is a potential NLO crystal and, in fact, the authors observed a strong second harmonic generation (SHG) effect by irradiation with IR light.

Figure 1

The molecular structure of $Bi_2B_8O_{15}$ showing 50% probability displacement ellipsoids.

Figure 2

Packing diagram showing the parallel (010) layers of sixfold coordinated Bi atoms alternating with borate layers and B_3O_6 rings.

Experimental

Since the crystal melted congruently, the top-seeded solution method was used. $Bi_2B_8O_{15}$ contains two modifications. The low-temperature form was obtained by rapidly cooling the crystal after its growth ended.

Crystal data

 $\begin{array}{l} \mathrm{Bi}_{2}\mathrm{B}_{8}\mathrm{O}_{15} \\ M_{r} = 744.44 \\ \mathrm{Monoclinic}, \ P2_{1} \\ a = 4.3142 \ (7) \ \mathrm{\mathring{A}} \\ b = 22.141 \ (4) \ \mathrm{\mathring{A}} \\ c = 6.4675 \ (10) \ \mathrm{\mathring{A}} \\ \beta = 105.441 \ (11)^{\circ} \\ V = 595.49 \ (16) \ \mathrm{\mathring{A}}^{3} \\ Z = 2 \end{array}$

Data collection

Bruker P4 diffractometer $\theta/2\theta$ scans Absorption correction: ψ scan (XSCANS; Siemens, 1996) $T_{min} = 0.05$, $T_{max} = 0.07$ 3607 measured reflections 2751 independent reflections 2655 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2>2\sigma(F^2)] = 0.070$ $wR(F^2) = 0.171$ S = 1.072751 reflections 227 parameters $\begin{array}{l} D_x = 4.152 \ \mathrm{Mg \ m^{-3}} \\ \mathrm{Mo \ } K\alpha \ \mathrm{radiation} \\ \mathrm{Cell \ parameters \ from \ 40} \\ \mathrm{reflections} \\ \theta = 5.5 - 15.9^{\circ} \\ \mu = 29.60 \ \mathrm{mm^{-1}} \\ T = 293 \ (2) \ \mathrm{K} \\ \mathrm{Prism, \ colourless} \\ 0.10 \ \times \ 0.10 \ \times \ 0.09 \ \mathrm{mm} \end{array}$

 $\begin{aligned} R_{\rm int} &= 0.072 \\ \theta_{\rm max} &= 35.0^{\circ} \\ h &= -6 \rightarrow 1 \\ k &= -35 \rightarrow 1 \\ l &= -10 \rightarrow 10 \\ 3 \text{ standard reflections} \\ \text{every 97 reflections} \\ \text{intensity decay: none} \end{aligned}$

$w = 1/[\sigma^2(F_o^2) + (0.1457P)^2]$
+ 1.4317P]
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 11.45 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -6.20 \text{ e} \text{ \AA}^{-3}$
Absolute structure: Flack (1983)
Flack parameter $= 0.19(6)$

The structure was refined as a racemic twin with components 0.81(6) and 0.19(6). 856 Friedel pairs were used. Because the

anisotropic atomic displacement parameters (ADP) of the light atoms are very large in this kind of structure, the *SHELXTL* commands *DELU*, *ISOR* and *SIMU* (Bruker, 1997) were used for all atoms in the refinement to restrain their ADPs in the direction of the bond to be equal within an s.u. of 0.01; atoms closer than 1.7 Å were restrained with an s.u. of 0.04 to have the same ADP components and to approximate isotropic behaviour with an s.u. of 0.1. The high *R* factor and large residual electron density is probably due to the poor crystal quality ($R_{int} = 0.072$). $\Delta \rho_{max}$ was located at the position x =0.2966, y = 0.2605, z = 0.115, at a distance of 0.66 Å from the Bi1 atom.

Data collection: *XSCANS* (Siemens, 1996); cell refinement: *XSCANS*; data reduction: *SHELXTL* (Bruker, 1997); program(s) used to solve structure: *SHELXTL*; program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*.

The work was supported by a Grant from the State Key Program of China.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: IZ1016). Services for accessing these data are described at the back of the journal.

References

Becker, P. (1998). Adv. Mater. 10, 979-992.

- Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, C. T. & Wu, Y. C. (1989). J. Opt. Soc. Am. B6, 616-621.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hellwig, H., Liebertz, J. & Bohaty, L. (1999). Solid State Commun. 109, 249.
- Levin, E. M. & McDaniel, C. L. (1962). J. Am. Ceram. Soc. 45, 355.

Siemens (1996). XSCANS User's Manual. Version 2.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

- Xue, D. & Zhang, S. (1997). Appl. Phys. A, 65, 451-456.
- Zhang, K. C. & Wang, X. M. (1996). Science of Nonlinear Optical Crystal Materials, p. 72. Beijing: Science Press.